Holomorphic Symplectic Geometry Ii

نویسنده

  • Mikhail Verbitsky
چکیده

Hyperkähler embeddings and holomorphic symplectic geometry II. 0. Introduction. This is a second part of the treatment of complex analytic subvarieties of a holomorphically symplectic Kähler manifold. For the convenience of the reader, in the first two sections of this paper we recall the definitions and results of the first part ([V-pt I]). By Calabi-Yau theorem, the holomorphically symplectic Kähler mani-folds can be supplied with a Ricci-flat Riemannian metric. This implies that such manifolds are hyperkähler (Definition 1.1). Conversely, all hyperkähler manifolds are holomorphically symplectic (Proposition 2.1). For a closed analytic subvariety S of a holomorphically symplectic M , one can restrict the holomorphic symplectic form of M to the Zarisky tangent sheaf of S. If this restriction is non-degenerate outside of singularities of S and the same is true for the set of singular points of S, this sub-variety is called non-degenerately symplectic (Definition 2.2). Of course, non-degenerately symplectic subvarieties are of even complex dimension. The hyperkähler manifold is endowed with the canonical SU (2)-action in this cohomology space. Fix an induced complex structure on a hyperkähler manifold M. Let N be a closed analytic subset of M. Then N defines a cycle [N ] in cohomology of M. Denote the Poincare dual cocycle by N. In [V-pt I] we proved that if N is SU (2)-invariant then N is non-degenerately symplectic (Theorem 2.2 of [V-pt I]). Take a generic element M 0 in a given deformation class of compact holomorphically symplectic Kähler manifolds. Then all integer (p, p)-cycles on M 0 (i. e., all elements of H 2p (M, Z) ∩ H p,p (M)) are SU (2)-invariant (Proposition 2.2). According to Theorem 2.2 of [V-pt I], this immediately implies the following statement: All closed analytic subvarieties of N are non-degenerately symplectic. If such subvariety is smooth, it is also a hy-perkähler manifold (Proposition 2.1). Let M be a hyperkähler manifold with three complex structures I, J and K. The closed subset X ∈ M is called tri-analytic if X is analytic with respect to I, J and K. In this paper we prove the following. Let N be a closed analytic subset 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperkähler embeddings and holomorphic symplectic geometry I. Mikhail Verbitsky,

Hyperkähler embeddings and holomorphic symplectic geometry I. 0. Introduction. In this paper we are studying complex analytic subvarieties of a given Kähler manifold which is endowed with a holomorphic symplectic structure. By Calabi-Yau theorem, the holomorphically symplectic Kähler mani-folds can be supplied with a Ricci-flat Riemannian metric. This implies that such manifolds are hyperkähler...

متن کامل

Higher dimensional knot spaces for manifolds with vector cross product

Vector cross product structures on manifolds include symplectic, volume, G2and Spin (7)-structures. We show that their knot spaces have natural symplectic structures, and we relate instantons and branes in these manifolds with holomorphic disks and Lagrangian submanifolds in their knot spaces. For the complex case, the holomorphic volume form on a Calabi-Yau manifold de…nes a complex vector cro...

متن کامل

Moduli of Higgs Bundles

2 Local symplectic, complex and Kähler geometry: a quick review 10 2.1 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Symplectic manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Symplectic quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Complex manifolds . . . . . . . . . . . . . . ....

متن کامل

What Is Symplectic Geometry?

In this talk we explain the elements of symplectic geometry, and sketch the proof of one of its foundational results — Gromov’s nonsqueezing theorem — using J-holomorphic curves.

متن کامل

Holomorphic symplectic geometry and orbifold singularities

Let G be a finite group acting on a symplectic complex vector space V . Assume that the quotient V/G has a holomorphic symplectic resolution. We prove that G is generated by “symplectic reflections”, i.e. symplectomorphisms with fixed space of codimension 2 in V . Symplectic resolutions are always semismall. A crepant resolution of V/G is always symplectic. We give a symplectic version of Nakam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994